Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 128
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(7)2024 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-38612907

RESUMEN

Age-related Macular Degeneration (AMD) is a multifactorial ocular pathology that destroys the photoreceptors of the macula. Two forms are distinguished, dry and wet AMD, with different pathophysiological mechanisms. Although treatments were shown to be effective in wet AMD, they remain a heavy burden for patients and caregivers, resulting in a lack of patient compliance. For dry AMD, no real effective treatment is available in Europe. It is, therefore, essential to look for new approaches. Recently, the use of long-chain and very long-chain polyunsaturated fatty acids was identified as an interesting new therapeutic alternative. Indeed, the levels of these fatty acids, core components of photoreceptors, are significantly decreased in AMD patients. To better understand this pathology and to evaluate the efficacy of various molecules, in vitro and in vivo models reproducing the mechanisms of both types of AMD were developed. This article reviews the anatomy and the physiological aging of the retina and summarizes the clinical aspects, pathophysiological mechanisms of AMD and potential treatment strategies. In vitro and in vivo models of AMD are also presented. Finally, this manuscript focuses on the application of omega-3 fatty acids for the prevention and treatment of both types of AMD.


Asunto(s)
Ácidos Grasos Omega-3 , Atrofia Geográfica , Degeneración Macular Húmeda , Humanos , Ácidos Grasos Insaturados/uso terapéutico , Ácidos Grasos , Ácidos Grasos Omega-3/uso terapéutico
2.
Pharmaceutics ; 16(3)2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38543209

RESUMEN

Radiofrequency ablation (RFA) of cancer induces an anti-tumor immunity, which is insufficient to prevent recurrences. In mice, RFA-intratumoral immunotherapy by granulocyte-macrophage colony-stimulating factor (GM-CSF) and Bacillus Calmette-Guerin resulted in complete metastases regression. Infectious risk in human needs replacement of live vaccines. Intratumoral purified protein derivatives (PPD) have never been tested in digestive cancers, and the safety of intratumoral immunotherapy after RFA has not yet been validated in human models. We investigated the therapeutic efficacy of combined radiofrequency ablation (RFA) and intratumoral immunotherapy (ITI) using an immune-muco-adherent thermogel (IMT) in a mouse model of metastatic colorectal cancer (CRC) and the safety of this approach in a pig model. Intratumoral stability of the immunogel was assessed using magnetic resonance imaging (MRI) and bioluminescent imaging. Seventy-four CT26 tumor-bearing female BALB/c mice were treated with RFA either alone or in combination with intratumoral IMT. Regression of distant metastasis and survival were monitored for 60 days. Six pigs that received liver radiofrequency and intralesional IMT injections were followed for 15 days. Experimental gel embolisms were treated using an intravascular approach. Pertinent rheology of IMT was confirmed in tumors, by the signal stability during 3 days in MRI and 7 days in bioluminescence imaging. In mice, the abscopal effect of RFA-intratumoral immunotherapy resulted in regression of distant lesions completed at day 16 vs. a volume of 350 ± 99.3 mm3 in the RFA group at day 25 and a 10-fold survival rate at 60 days. In pigs, injection of immunogel in the liver RFA area was safe after volume adjustment without clinical, hematological, and liver biology disorder. Flow cytometry showed an early increase in CD3 TCRγδ+T cells at D7 (p < 0.05) and a late decrease in CD29+-CD8 T cells at D15 (p < 0.05), reflecting the inflammation status changes. Systemic GM-CSF release was not detectable. Experimental caval and pulmonary thermogel embolisms were treated by percutaneous catheterism and cold serum infusion. RFA-intratumoral immunotherapy as efficient and safe mini-invasive interventional oncology is able to improve ablative treatment of colorectal liver metastases.

3.
Gels ; 10(3)2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38534573

RESUMEN

This study explores a nanoemulsion (NE)-based gel incorporating Tunisian Pituranthos tortuosus essential oil, with a focus on its wound-healing potential. The essential oil, extracted via hydrodistillation, underwent GC-MS analysis for compositional verification. The physicochemical characterization included dynamic light scattering (DLS), transmission electron microscopy (TEM), zeta potential measurement, pH, and viscosity. The gelification of the NE facilitated topical application. The results revealed an average extraction yield of 0.45% and identified 38 compounds in the essential oil. The NE exhibited a particle size of 27 ± 0.4 nm, a polydispersity index (PDI) of 0.3, and a zeta potential of -22.8 ± 1.4 mV. The stability of the gelified preparation was confirmed through thermodynamic stability studies, TEM observations, and zeta and size results. In vivo experiments confirmed significant wound-healing effects, highlighting the promising role of the NE-based gel in healthcare advancements. This research underscores the potential of novel phyto-based delivery systems in wound care.

4.
Small ; : e2306054, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38299478

RESUMEN

Nanosized drug crystals have been reported with enhanced apparent solubility, bioavailability, and therapeutic efficacy compared to microcrystal materials, which are not suitable for parenteral administration. However, nanocrystal design and development by bottom-up approaches are challenging, especially considering the non-standardized process parameters in the injection step. This work aims to present a systematic step-by-step approach through Quality-by-Design (QbD) and Design of Experiments (DoE) for synthesizing drug nanocrystals by a semi-automated nanoprecipitation method. Curcumin is used as a drug model due to its well-known poor water solubility (0.6 µg mL-1 , 25 °C). Formal and informal risk assessment tools allow identifying the critical factors. A fractional factorial 24-1 screening design evaluates their impact on the average size and polydispersity of nanocrystals. The optimization of significant factors is done by a Central Composite Design. This response surface methodology supports the rational design of the nanocrystals, identifying and exploring the design space. The proposed joint approach leads to a reproducible, robust, and stable nanocrystalline preparation of 316 nm with a PdI of 0.217 in compliance with the quality profile. An orthogonal approach for particle size and polydispersity characterization allows discarding the formation of aggregates. Overall, the synergy between advanced data analysis and semi-automated standardized nanocrystallization of drugs is highlighted.

5.
Drug Deliv Transl Res ; 14(1): 223-235, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37523093

RESUMEN

In the present study, a self-nano-emulsifying drug delivery system (SNEDDS) was developed to evaluate the efficiency of thymoquinone (TQ) in hepatic ischemia/reperfusion. SNEDDS was pharmaceutically characterized to evaluate droplet size, morphology, zeta potential, thermodynamic stability, and dissolution/diffusion capacity. Animals were orally pre-treated during 10 days with TQ-loaded SNEDDS. Biochemical analyses, hematoxylin-eosin staining, indirect immunofluorescence, and reverse transcription polymerase chain reaction (RT-PCR) were carried out to assess cell injury, oxidative stress, inflammation, and apoptosis. The TQ formulation showed good in vitro characteristics, including stable nanoparticle structure and size with high drug release rate. In vivo determinations revealed that TQ-loaded SNEDDS pre-treatment of rats maintained cellular integrity by decreasing transaminase (ALT and AST) release and preserving the histological characteristics of their liver. The antioxidant ability of the formulation was proven by increased SOD activity, reduced MDA concentration, and iNOS protein expression. In addition, this formulation exerted an anti-inflammatory effect evidenced by reduced plasma CRP concentration, MPO activity, and gene expressions of TLR-4, TNF-α, NF-κB, and IL-6. Finally, the TQ-loaded SNEDDS formulation promoted cell survival by enhancing the Bcl-2/Bax ratio. In conclusion, our results indicate that TQ encapsulated in SNEDDS significantly protects rat liver from I/R injury.


Asunto(s)
Sistema de Administración de Fármacos con Nanopartículas , Daño por Reperfusión , Ratas , Animales , Ratas Wistar , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patología , Isquemia/tratamiento farmacológico , Sistemas de Liberación de Medicamentos
6.
Int J Pharm ; 651: 123744, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38145778

RESUMEN

Lung cancer is a highly vascularized tumor for which a combination between an antitumor agent, cisplatin, and an antiangiogenic molecule, fisetin, appears a promising therapeutic approach. In order to deliver both chemotherapies within the tumor, to enhance fisetin solubility and decrease cisplatin toxicity, an encapsulation of both drugs into liposomes was developed. Purification and freeze-drying protocols were optimized to improve both the encapsulation and liposome storage. The cytotoxicity of the encapsulated chemotherapies was evaluated on Lewis lung carcinoma (3LL) cell lines. The antitumor effect of the combination was evaluated in vivo on an ectopic mouse model of Lewis Lung carcinoma. The results showed that fisetin and cisplatin co-loaded liposomes were successfully prepared. Freeze-drying allowed a 30 days storage limiting the release of both drugs. The combination index between liposomal fisetin and liposomal cisplatin on 3LL cell line after 24 h of exposure showed a clear synergism: CI = 0.7 for the co loaded liposomes and CI = 0.9 for the mixture of cisplatin loaded and fisetin loaded liposomes. The co-encapsulating formulation showed in vivo efficacy against an ectopic murine model of Lewis Lung carcinoma with a probable reduction in the toxicity of cisplatin through co-encapsulation with fisetin.


Asunto(s)
Antineoplásicos , Carcinoma Pulmonar de Lewis , Flavonoles , Neoplasias Pulmonares , Ratones , Animales , Cisplatino/farmacología , Liposomas/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Carcinoma Pulmonar de Lewis/tratamiento farmacológico , Fosfolípidos/uso terapéutico , Modelos Animales , Línea Celular Tumoral
7.
ChemSusChem ; 16(20): e202301431, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37876328

RESUMEN

Invited for this month's cover, the researchers from UTCBS and CiTCoM from Université Paris Cité (Paris, France), as well as Materia Nova (Mons, Belgium). The image emphasizes the deep eutectic solvent preparation thanks to hydrogen bond acceptor and donor interactions for drugs formulation and therapeutic applications. The Review itself is available at 10.1002/cssc.202300669.


Asunto(s)
Disolventes Eutécticos Profundos , Solventes/química , Composición de Medicamentos , Enlace de Hidrógeno
8.
ACS Appl Bio Mater ; 6(11): 4791-4804, 2023 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-37862269

RESUMEN

Cancer treatment is a crucial area of research and development, as current chemotherapeutic treatments can have severe side effects or poor outcomes. In the constant search for new strategies that are localized and minimally invasive and produce minimal side effects, photodynamic therapy (PDT) is an exciting therapeutic modality that has been gaining attention. The use of theranostics, which combine diagnostic and therapeutic capabilities, can further improve treatment monitoring through image guidance. This study explores the potential of a theranostic agent consisting of four Gd(III) DTTA complexes (DTTA: diethylenetriamine-N,N,N″,N″-tetraacetate) grafted to a meso-tetraphenylporphyrin core for PDT, fluorescence, and magnetic resonance imaging (MRI). The agent was first tested in vitro on both nonmalignant TIB-75 and MRC-5 and tumoral CT26 and HT-29 cell lines and subsequently evaluated in vivo in a preclinical colorectal tumor model. Advanced MRI and optical imaging techniques were employed with engineered quantitative in vivo molecular imaging based on dynamic acquisition sequences to track the biodistribution of agents in the body. With 3D quantitative volume computed by MRI and tumoral cell function assessed by bioluminescence imaging, we could demonstrate a significant impact of the molecular agent on tumor growth following light application. Further exhaustive histological analysis confirmed these promising results, making this theranostic agent a potential drug candidate for cancer.


Asunto(s)
Neoplasias , Fotoquimioterapia , Humanos , Fotoquimioterapia/métodos , Medicina de Precisión , Distribución Tisular , Imagen por Resonancia Magnética , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico
9.
Inorg Chem ; 62(38): 15510-15526, 2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37708255

RESUMEN

Maleimide-containing prodrugs can quickly and selectively react with circulating serum albumin following their injection in the bloodstream. The drug-albumin complex then benefits from longer blood circulation times and better tumor accumulation. Herein, we have applied this strategy to a previously reported highly phototoxic Ru polypyridyl complex-based photosensitizer to increase its accumulation at the tumor, reduce off-target cytotoxicity, and therefore improve its pharmacological profile. Specifically, two complexes were synthesized bearing a maleimide group: one complex with the maleimide directly incorporated into the bipyridyl ligand, and the other has a hydrophilic linker between the ligand and the maleimide group. Their interaction with albumin was studied in-depth, revealing their ability to efficiently bind both covalently and noncovalently to the plasma protein. A crucial finding is that the maleimide-functionalized complexes exhibited significantly lower cytotoxicity in noncancerous cells under dark conditions compared to the nonfunctionalized complex, which is a highly desirable property for a photosensitizer. The binding to albumin also led to a decrease in the phototoxicity of the Ru bioconjugates in comparison to the nonfunctionalized complex, probably due to a decreased cellular uptake. Unfortunately, this decrease in phototoxicity was not compensated by a dramatic increase in tumor accumulation, as was demonstrated in a tumor-bearing mouse model using inductively coupled plasma mass spectrometry (ICP-MS) studies. Consequently, this study provides valuable insight into the future design of in situ albumin-binding complexes for photodynamic therapy in order to maximize their effectiveness and realize their full potential.


Asunto(s)
Antineoplásicos , Complejos de Coordinación , Neoplasias , Fotoquimioterapia , Rutenio , Animales , Ratones , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/química , Rutenio/farmacología , Rutenio/química , Ligandos , Albúmina Sérica , Maleimidas/farmacología , Complejos de Coordinación/farmacología , Complejos de Coordinación/química , Antineoplásicos/química
11.
Small ; 19(49): e2303509, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37635118

RESUMEN

Persistent luminescence nanoparticles (PLNPs) are innovative materials able to emit light for a long time after the end of their excitation. Thanks to this property, their detection can be separated in time from the excitation, making it possible to obtain images with a high signal-to-noise ratio. This optical property can be of particular interest for the development of in vitro biosensors. Here, we report the unexpected effect of hydrogen peroxide (H2 O2 ) on the signal intensity of ZnGa2 O4 :Cr3+ (ZGO) nanoparticles. In the presence of H2 O2 , the signal intensity of ZGO can be amplified. This signal amplification can be used to detect and quantify H2 O2 in various media, using non-functionalized ZGO nanoparticles. This small molecule can be produced by several oxidases when they react with their substrate. Indeed, the quantification of glucose, lactic acid, and uric acid is possible. The limit of detection could be lowered by modifying the nanoparticles synthesis route. These optimized nanoparticles can also be used as new biosensor to detect larger molecules such as antigen, using the appropriate antibody. This unique property, i.e., persistent luminescence signal enhancement induced by H2 O2 , represents a new way to detect biomolecules which could lead to a very large number of bioassay applications.


Asunto(s)
Técnicas Biosensibles , Nanopartículas , Luminiscencia , Nanopartículas/química , Técnicas Biosensibles/métodos
12.
J Pharm Biomed Anal ; 234: 115541, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37399702

RESUMEN

Despite reports indicating the potential impact of post-translational modifications on the activity of a monoclonal antibody, their prediction or monitoring post-administration remains a challenge. In addition, with the expiration of patents concerning the early generation of mAbs, the production of biosimilars is constantly increasing. Structural differences of biosimilars compared to the innovator product are commonly evaluated for the formulated product in the context of biosimilarity assessment. However, estimating their structural outcome after administration is particularly difficult. Due to the complexity of in vivo studies, there is a need to develop analytical strategies to predict PTMs consequently to their administration and their impact on mAbs potency. Here, we identified and evaluated the modification kinetics of 4 asparagine deamidations and 2 aspartate isomerizations of infliximab innovator product (Remicade®) and two biosimilars (Inflectra® and Remsima®) in vitro using serum incubation at 37 °C. The methodology was based on a bottom-up approach with capillary electrophoresis hyphenated with mass spectrometry analysis for an unequivocal assignment of modified and unmodified forms. 2 asparagines demonstrated a gradual deamidation correlated with incubation time. The specific extraction efficiency was evaluated to determine possible changes in the antigen binding affinity of infliximab with the incubation. Results showed the possibility to achieve an additional aspect concerning biosimilarity assessment, oriented on the study of the structural stability after administration.


Asunto(s)
Biosimilares Farmacéuticos , Infliximab/química , Biosimilares Farmacéuticos/química , Espectrometría de Masas en Tándem/métodos , Cinética , Procesamiento Proteico-Postraduccional , Electroforesis Capilar/métodos , Asparagina
13.
ChemSusChem ; 16(20): e202300669, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37463123

RESUMEN

In the spirit of circular economy and sustainable chemistry, the use of environmentally friendly chemical products in pharmacy has become a hot topic. In recent years, organic solvents have been the subject of a great range of restriction policies due to their harmful effects on the environment and toxicity to human health. In parallel, deep eutectic solvents (DESs) have emerged as suitable greener solvents with beneficial environmental impacts and a rich palette of physicochemical advantages related to their low cost and biocompatibility. Additionally, DESs can enable remarkable solubilizing effect for several active pharmaceutical ingredients (APIs), thus forming therapeutic DESs (TheDESs). In this work, special attention is paid to DESs, presenting a precise definition, classification, methods of preparation, and characterization. A description of natural DESs (NaDESs), i. e., eutectic solvents present in natural sources, is also reported. Moreover, the present review article is the first one to detail the different approaches for judiciously selecting the constituents of DESs in order to minimize the number of experiments. The role of DESs in the biomedical and pharmaceutical sectors and their impact on the development of successful therapies are also discussed.


Asunto(s)
Disolventes Eutécticos Profundos , Humanos , Solventes/química , Preparaciones Farmacéuticas
14.
J Pharm Biomed Anal ; 233: 115446, 2023 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-37209497

RESUMEN

Monoclonal antibodies (mAbs) are demonstrating major success in various therapeutic areas such as oncology and the treatment of immune disorders. Over the past two decades, novel analytical methodologies allowed to address the challenges of mAbs characterization in the context of their production. However, after administration only their quantification is performed and insights regarding their structural evolution remain limited. For instance, clinical practice has recently highlighted significant inter-patient differences in mAb clearance and unexpected clinical responses, without providing alternative interpretations. Here, we report the development of a novel analytical strategy based on capillary zone electrophoresis coupled to tandem mass spectrometry (CE-MS/MS) for the simultaneous absolute quantification and structural characterization of infliximab (IFX) in human serum. CE-MS/MS quantification was validated over the range 0.4-25 µg·mL-1 corresponding to the IFX therapeutic window and achieved a LOQ of 0.22 µg·mL-1 (1.5 nM) while demonstrating outstanding specificity compared to the ELISA assay. CE-MS/MS allowed structural characterization and estimation of the relative abundance of the six major N-glycosylations expressed by IFX. In addition, the results allowed characterization and determination of the level of modification of post-translational modifications (PTMs) hotspots including deamidation of 4 asparagine and isomerization of 2 aspartate. Concerning N-glycosylation and PTMs, a new normalization strategy was developed to measure the variation of modification levels that occur strictly during the residence time of IFX in the patient's system, overcoming artefactual modifications induced by sample treatment and/or storage. The CE-MS/MS methodology was applied to the analysis of samples from patients with Crohn's disease. The data identified a gradual deamidation of a particular asparagine residue located in the complementary determining region that correlated with IFX residence time, while the evolution of IFX concentration showed significant variability among patients.


Asunto(s)
Anticuerpos Monoclonales , Espectrometría de Masas en Tándem , Humanos , Anticuerpos Monoclonales/química , Espectrometría de Masas en Tándem/métodos , Asparagina , Infliximab , Electroforesis Capilar/métodos
16.
Methods Mol Biol ; 2622: 127-137, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36781756

RESUMEN

To provide long circulating nanoparticles able to carry a gene to tumor cells, we have designed anionic pegylated lipoplexes which are pH sensitive. The reduction of positive charges in nucleic acid carriers allows reducing the elimination rate, increasing circulation time in the blood, leading to improved tumor accumulation of lipid nanoparticles. Anionic pegylated lipoplexes have been prepared from the combined formulation of cationic lipoplexes and pegylated anionic liposomes. The neutralization of the particle surface charge as a function of the pH was monitored by dynamic light scattering in order to determine the ratio between anionic and cationic lipids that would give pH-sensitive complexes. This ratio has been optimized to form particles sensitive to pH change in the range 5.5-6.5. Compaction of DNA into these newly formed anionic complexes was checked by DNA accessibility to Picogreen. The transfection efficiency and pH-sensitive property of these formulations were shown in vitro using bafilomycin, a vacuolar H+-ATPase inhibitor.


Asunto(s)
ADN , Liposomas , Liposomas/química , Transfección , ADN/química , Concentración de Iones de Hidrógeno , Polietilenglicoles/química
17.
Methods Mol Biol ; 2622: 277-287, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36781770

RESUMEN

Vector biodistribution is a requirement prior pharmaceutical development. Radioactive tracers allow the most sensitive and quantitative assessment of biodistribution, and conventional fluorophores are widely used in academic laboratories. We propose here to use europium complexes as a label for nanoparticles or biotherapeutics taking liposomes as models. Time-resolved fluorimetry (TRF) has the tremendous advantage of taking into accounts the fluorescence decay time of the lanthanide chelates, resulting in an improved sensitivity in biological media. The work described aimed following liposome biodistribution by TRF. An octadecyl-DTPA.Eu compound has been prepared and incorporated into liposomes without altering its fluorescence signal. The method has been validated through a comparison with fluorophore-labeled liposomes. The way to proceed when using this method for liposome biodistribution assessment is detailed. It could obviously be applied to other nanosystems, such as lipid nanoparticles.


Asunto(s)
Europio , Elementos de la Serie de los Lantanoides , Liposomas , Distribución Tisular , Quelantes
18.
Methods Mol Biol ; 2622: 289-302, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36781771

RESUMEN

Nanomedicine offers the possibility of modifying the distribution of encapsulated drugs and biomolecules. Nanomedicine could limit the transplacental passage and/or enhance the concentration of drugs in placental tissue; this approach could be exploited for the treatment of pregnancy disorders. In the context of pregnancy, tackling the biological fate of both the nanocarrier and the drug has high importance in ensuring both the mother's and the fetus' safety.In this study, we propose a method for quantifying the uptake of liposomes inside placental tissue using covalently labeled liposomes and adapting a high-performance liquid chromatography (HPLC) method using a fluorescent detector. An optimized protocol for liquid-liquid extraction of fluorescent lipids from placental tissue extracts, followed by HPLC analysis, is detailed in this chapter. The HPLC method allows the quantification of fluorescent lipids using a calibration curve, including the biological matrix and extraction procedures. The internalization rate of fluorescent liposomes within human villous placental explants was quantitatively assessed, thanks to the HPLC developed method and suitable analytical tools.


Asunto(s)
Liposomas , Placenta , Embarazo , Humanos , Femenino , Placenta/metabolismo , Liposomas/metabolismo , Cromatografía Líquida de Alta Presión , Transporte Biológico , Colorantes/metabolismo , Lípidos/química
19.
Anal Bioanal Chem ; 415(1): 179-192, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36449030

RESUMEN

Monoclonal antibodies (mAbs) represent a dynamic class of biopharmaceutical products, as evidenced by an increasing number of market authorizations for mAb innovator and biosimilar products. Stability studies are commonly performed during product development, for instance, to exclude unstable molecules, optimize the formulation or determine the storage limit. Such studies are time-consuming, especially for mAbs, because of their structural complexity which requires multiple analytical techniques to achieve a detailed characterization. We report the implementation of a novel methodology based on the accelerated stability assessment program (ASAP) in order to model the long-term stability of mAbs in relation to different structural aspects. Stability studies of innovator infliximab and two different biosimilars were performed using forced degradation conditions alongside in-use administration conditions in order to investigate their similarity regarding stability. Thus, characterization of post-translational modifications was achieved using liquid-chromatography-tandem mass spectrometry (LC-MS/MS) analysis, and the formation of aggregates and free chain fragments was characterized using size-exclusion chromatography-multi-angle light scattering (SEC-MALS-UV/RI) analysis. Consequently, ASAP models were investigated with regard to free chain fragmentation of mAbs concomitantly with N57 deamidation, located in the hypervariable region. Comparison of ASAP models and the long-term stability data from samples stored in intravenous bags demonstrated a relevant correlation, indicating the stability of the mAbs. The developed methodology highlighted the particularities of ASAP modeling for mAbs and demonstrated the possibility to independently consider the different types of degradation pathways in order to provide accurate and appropriate prediction of the long-term stability of this type of biomolecule.


Asunto(s)
Anticuerpos Monoclonales , Biosimilares Farmacéuticos , Anticuerpos Monoclonales/química , Infliximab , Cromatografía Liquida/métodos , Biosimilares Farmacéuticos/química , Espectrometría de Masas en Tándem , Cromatografía en Gel
20.
Int J Pharm X ; 4: 100138, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36405872

RESUMEN

We report the formulation, characterization, colloidal stability, and in vitro efficiency of Fisetin nanocrystals stabilized by poloxamer P407. Such nanocrystals present a nanometer scale (148.6 ± 1.1 nm) and a high homogeneity (polydispersity index of 0.17 ± 0.01), with a production yield of 97.0 ± 2.5%. The engineered formulations of nanocrystals suspension (pH of 7.4 ± 0.1), stabilized via steric repulsion, are stable for several days in aqueous environment (Milli Q water, NaCl 10 mM or mannitol 5% w/v), for few days in HEPES buffered saline (HBS) (20 / 150 mM) under sink conditions, and in culture medium. After freeze drying in 5% w/v mannitol, the nanocrystal formulations can be stored at -80 °C for at least 120 days. Drug release experiments displayed a 98.7 ± 5.1% cumulative release over 3 days in HBS. Compared to the free drug, the nanocrystal formulations showed an improved cytotoxicity highlighted by the decrease of the half maximal inhibitory concentration for both murine Lewis lung carcinoma (3LL) and human endothelial (EA.hy926) cell lines. In addition, after incubation with Fisetin nanosuspensions, significant changes in the cell morphology for both cell lines were observed, showing an improved anti-angiogenic effect of nanocrystals formulation compared to the free drug. Overall, Fisetin formulated as nanocrystals showed enhanced biopharmaceutical properties and in vitro activity, offering a wide range of indications for challenging applications in the clinic.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA